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ABSTRACT

Deep x-ray lithography and electroplating may be combined to form a fabrication

tool for micromechanical devices with large structural heights, to 500 I.tm, and extreme

edge acuities, less than 0.1 _m run-out per 100 i.tm of height. This process concept which

originated in Germany as LIGA[1] may be further extended by adding surface

micromachining[2]. This extension permits the fabrication of precision metal and plastic

parts which may be assembled into three-dimensional micromechanical components and

systems.

The processing tool may be used to fabricate devices from ferromagnetic material

such as nickel and nickel-iron alloys. These materials when properly heat treated exhibit

acceptable magnetic behavior for current to flux conversion and marginal behavior for

permanent magnet applications.

The tool and materials have been tested via planar, magnetic, rotational micromotor

fabrication. Three phase reluctance machines of the 6:4 configuration with 280 ktm

diameter rotors have been tested and analyzed[3,4]. Stable rotational speeds to 34,000 rpm

with output torques above 10 x 10 -9 N-m have been obtained. The behavior is monitored

with integrated shaft encoders which are photodiodes which measure the rotor response.

Magnetic levitation of the rotor via reluctance forces has been achieved and has reduced

frictional torque losses to less than 1% of the available torque.
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The results indicate that high speed limits of these actuators are related to torque

ripple. Hysteresis motors with magnetic bearings are under consideration and will produce

high speed rotational machines with excellent sensor application potential.

INTRODUCTION

In 1959 J.W. Beams reported on experiments in which he levitated a ferromagnetic

sphere in a magnetic suspension in a hard vacuum environment[5]. The sphere with a

diameter of a few hundred micrometers was rotated via magnetic induction to speeds above

50,000,000 rpm which eventually led to plastic deformation of the ferromagnetic material.

The reported run-up and coast-down times were several days. Beams's experiment

fundamentally contributed to gyro and ultra centrifuge progress. It is possible to argue that

Beams's work also affects modem micromotor development in the sense that (a) his rotor

diameter is of the same size as micromotor rotors and (b) that performance of micromotors

which approaches Beams's results would have major implications on application

possibilities for micromachines.

The challenges to micromotor fabrication and design in the present context are

many. All micromotors will have small torque outputs. This is simply a consequence of

available energy density and working volume. Since maximum energy densities for

magnetics and electrostatics are fixed and the working volume is small the low torque

output statement is justified. The argument can be taken one step further: micromachines

with a small chip area profit from construction techniques which utilize the structural height

of the device for volume and therefore torque increases.

With small output torques motor losses must be minimized. In the present context

this implies a non-contact bearing and, of course, hard vacuum operation. Since true

electrostatic and magnetic bearings are open circuit unstable appropriate sensors and

feedback mechanisms become part of the motor design.

The third point involves the motor type. Micromotors have a small moment of

inertia. This is good and bad. If the torque versus rotational angle behavior of the machine

has large ripple the machine will become a stepping motor which will cause major problems

with maximum speeds because the rotational speed will become angle dependent and pole
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overshoot will lead to synchronization problems[6]. A constant torque versus rotational

angle behavior avoids this issue and simplifies motor control schemes significantly.

The driving mechanism for the anticipated machine can be electrostatic or magnetic.

Maximum energy densities are slightly larger for magnetics. Processing convenience

favors electrostatics because the structures are less three dimensional than magnetic devices

because of the enveloping coil requirement for current to flux conversion. The motor

control aspect for rotational speed to 1 x 106 rps and possibly many pole configurations •

require microelectronics with fairly high clock rates. Integrated circuits for high speed

current switching, and magnetics are available. High speed, high voltage control circuitry

is much more limited. System perspectives do therefore favor magnetics for the immediate

future. The torque ripple issue which is a severe problem for nearly all electrostatic

machines tilts the implementation towards magnetics.

MAGNETIC MOTOR FABRICATION AND DESIGN

In the previous section the goals for a high speed motor program have been

discussed. The stated requirements are of course very ambitious and are subdivided into a

preliminary phase with the goals of (1) providing a planar magnetic motor (2)

demonstrating a one-dimensional magnetic beating and (3) incorporating rotor position

sensors.

The technology of choice is a combination of integrated circuit processing, deep x-

ray lithography and metal plating and surface micromachining. The motor design is that of

a three phase machine: six poles, with a salient rotor with symmetry about the x and y axis.

Levitation is provided by fabricating the rotor at a structural height which is less than the

stator height and therefore produces an upward force due to the stator field. The rotor

support shaft is fluted to reduce frictional losses and to produce centering via currents

during atmospheric operation. Rotor position sensing is achieved by a shaft encoder which

is formed from diffused photodiodes which are located in the substrate. Figure (1)

illustrates the general concepts.
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Figure 1. Stator, rotor, fluted shaft and photodiode layout.

The processing sequence starts with a 3" silicon substrate which is oxidized and

patterned with the photodiode diffusion mask via standard IC-processing. The passivated

substrate is next covered with a nickel layer which is pattemed with the lower sections of

the coil windings which will eventually surround the magnetic material. These coils will

have to be insulated which implies a dielectric cover which in the present case is formed by

a layer of chemical vapor deposited oxide. Both of these processes, nickel and oxide

deposition, are more or less standard integrated circuit processing procedures; the same

comment applies to the removal of the oxide over the nickel in the area in which the vertical

sections of the coil are to be attached.

The procedures become unusual in the next sequence which deals with surface

micromachining. A sacrificial layer of soft polyimide is applied and patterned in those

areas of the wafer in which for instance free magnetic structures such as the rotor are to be

produced. After this process the entire wafer is covered with a sputtered plating base:

150/_ of titanium followed by 150A of nickel. These procedures are again nearly routine

IC-fabrication procedures.

Unusual processing which is related to the high structural height requirement starts

at this point. The wafer is covered with a casted film of x-ray sensitive photoresist. The

thickness of this layer is typically 300 micrometer which is of course very unusual for
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Figure 2. SEM photograph of completed integrated planar magnetic

micromotor. The configuration is that of a 6 pole stator and 4 pole rotor stepping motor

with six turns per pole pair.

photoresist thicknesses which are typically near 1 micrometer. The x-ray photoresist is

exposed by using synchrotron radiation with wavelengths between 2 to 3 ]k, through an x-

ray mask which is aligned to the working substrate. Because synchrotron radiation is

collimated very well and x-ray absorption cannot produce standing waves, developing of

the exposed pattern produces a photoresist mold with nearly p_rfect definition and, in

particular, pattern run-out of less than 0.1 I.tm per 100 I.tm of structural height. The

developed mold recesses are next filled with electroplated metal: in the present case nickel

or permalloy 80% Ni, 20% Fe. The x-ray photoresist is removed, any unwanted plating

base is etched off and the sacrificial layer is chemically dissolved. The substrate now

consists of fully attached parts such as the stator with partially finished coils and the center

hub and of course free parts such as the rotor. The coils are completed by wire bonding

with 30 I.tm diameter wire. The rotor is assembled to the shaft in a micromanipulator and

the device as shown in Fig. 2 is ready for testing.
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The actual design of a planar micromotor insists on closed magnetic circuits which

are in the plane of the substrate. The total reluctance in this geometry involves not only the

two air gaps between rotor and stator but also the reluctance of the rotor and the flux return

path. Since the return path reluctance is parasitic on motor performance it must be

minimized to obtain maximum gap flux. This minimization involves the magnetic

properties of the material: a high permeability is desirable and the geometry: short path

lengths with large cross-sections are favored. In this sense, the chip area which a motor

for given torque output uses becomes very much a function of magnetic material properties.
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The processing tool as discussed here can produce shaft to rotor clearances which

are submicron. The reason for this is found in the fact that assembly implies shaft to rotor

clearances which are obtained by subtracting two optically defined dimensions. These two

individual dimensions cannot be submicronl However, their differences can. This

observation together with the low flank run-out allows the fabrication of motor air gaps

with demonstrated dimensions of less than 0.25 _m. This is advantageous from two

perspectives: reduced friction due to precision bushings and large potential magnetic gap

pressures. These large magnetic flux densities can, however, only be achieved if the return

path reluctance is small in comparison to the gap reluctance. This condition has not been

achieved with pure annealed nickel ferromagnetics. However, recent improvements in

magnetic materials as shown in Figure 3 allow designs with magnetic flux densities in the

gap of better than 3000 gauss.
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Figure 3. Magnetic behavior of as deposited 78Ni-22Fe permalloy.



In the current motor designs rotor thickness is less than stator thickness. This

implies that the rotor will levitate in the stator field. The amount of levitation depends on

the gap flux and the weight of the rotor. Self-centering can be achieved if the motor shaft is

fluted and if the device is operated in modest pressure ambients. Theoretical analysis of the

detailed rotor behavior requires at the very least a three-dimensional magnetic field analysis

which can also estimate the motor torque output. This has been achieved by using Flux

3D[7]. The anticipated results are shown in Fig. 4.
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Figure 4. Simulated normalized torque curves for 90 ° of motor rotation.

Stator-rotor alignment occurs at 0 ° and every 30 ° thereafter. These curves

assume a square wave excitation. The current excitation waveform shape

will modulate these torque curve shapes further. These curves apply to a

motor which has a 285 _tm diameter rotor, 80 lain in thickness centered

about a stator of 160 p.m thickness.

Software which can handle fluid mechanics and magnetics or mechanical deformation due

to magnetic forces is not available. It would aid design tremendously.

TEST RESULTS

In order to test experimental structures the motors are packaged into flat packs as

shown in Figure 5.
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Figure 5. Packaged micromotor shown in vacuum system.

Motor behavior is studied via visual examination which typically involves video tapes.

Much more detailed data is obtained from the photodiode shaft encoder. Both data sets

result in the conclusion that this type of reluctance motor functions as a stepping motor with

significant pole overshoot. This overshoot causes a loss of synchronization for open loop

operation and therefore a maximum open loop rotational speed. The estimated failure

frequency is given by

(1)

Where T is the slope of the torque curve near rotor alignment and JR the rotor polar

moment of inertial8,9]. Typical values for a 280 i.tm rotor which is 80 I.tm thick and is

suspended in a 160 lam tall stator are JR = 1.7. x 10 -16 kg - m 2 if the shaft diameter is 72

lain with a torque slope of ... The predicted maximum rotational speed becomes 44,000

rpm. Experimental data resulted in a maximum speed of 33,000 rpm. A word of caution is

in order: these speeds refer to open loop operation with non-overlapping square wave

excitation on the three phases. For these test conditions which were performed in room air

ambients frictional losses are roughly 0.5% of available torque. A comparison of room
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ambient to vacuum operation did not change the upper speed significantly and produced no

significant modification in the pole overshoot behavior. The frictional loss appears to come

from shaft friction which is low because of shaft geometry and the inherently low radial

forces for this type of machine. A new design with improved magnetic material and

smaller rotor radius has been constructed. It is anticipated that rotational speeds above

100,000 rpm will be achieved.

Rotor levitation during these tests is roughly 45 gm. Substrate friction is therefore

absent. Long term testing at maximum speed did not affect motor performance. Shaft

wear via electron microscope examination was not detectable.

CONCLUSIONS

Planar reluctance motor design, construction and testing have been accomplished in

the presence of a one-dimensional magnetic bearing and integrated shaft encoder.

Experimental and theoretical performance are in rough agreement.

The use of micromotors for very high speed operation hinges on two issues: torque

ripple and friction. Torque ripple is inherent to reluctance motors which are expected to

peak out between 100,000 and 200,000 rpm. This class of motors will therefore not

achieve very high speed directly but could do this by step-up gear boxes and closed loop

control. Other motor types, for instance hysteresis motors, have inherently less torque

ripple and are currently under investigation[10].

Frictional losses must be reduced significantly for high speed devices. This can be

accomplished by two methods: a true magnetic beating for which the position sensors have

already been demonstrated or a form of non-contact beating which is unique to

micromechanics. Both approaches are under active investigation.

The available torque output from micromotors, currently 20 x 10 -9 Newton - meter,

can be improved significantly. If this torque is available with minimized ripple and non-

contact bearings, micromotors will approach Beams's experimental results. Ramp speeds

which in Beams's case involved several days to reach maximum speed will be comparable

and acceptable even if modest angular momentum storage devices are to be driven by this

type of machine.
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